Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Study DesignFinite element (FE) study. ObjectivePedicle subtraction osteotomy (PSO) is a surgical method to correct sagittal plane deformities. In this study, we aimed to investigate the biomechanical effects of lumbar disc degeneration on the instrumentation following PSO and assess the effects of using interbody spacers adjacent to the PSO level in a long instrumented spinal construct. MethodsA spinopelvic model (T10-pelvis) with PSO at the L3 level was used to generate 3 different simplified grades of degenerated lumbar discs (mild (Pfirrmann grade III), moderate (Pfirrmann grade IV), and severe (Pfirrmann grade V)). Instrumentation included eighteen pedicle screws and bilateral primary rods. To investigate the effect of interbody spacers, the model with normal disc height was modified to accommodate 2 interbody spacers adjacent to the PSO level through a lateral approach. For the models, the rods’ stress distribution, PSO site force values, and the spine range of motion (ROM) were recorded. ResultsThe mildly, moderately, and severely degenerated models indicated approximately 10%, 26%, and 40% decrease in flexion/extension motion, respectively. Supplementing the instrumented spinopelvic PSO model using interbody spacers reduced the ROM by 22%, 21%, 4%, and 11% in flexion, extension, lateral bending, and axial rotation, respectively. The FE results illustrated lower von Mises stress on the rods and higher forces at the PSO site at higher degeneration grades and while using the interbody spacers. ConclusionsLarger and less degenerated discs adjacent to the PSO site may warrant consideration for interbody cage instrumentation to decrease the risk of rod fracture and PSO site non-union.more » « less
-
Background:The use of total hip arthroplasty (THA) femoral stems that transmit force in a favourable manner to the femur may minimise periprosthetic fractures. Finite element analysis (FEA) is a computerised method that analyses the effect of forces applied to a structure with complex shape. Our aim was to apply FEA to compare primary THA cementless stem designs and their association with periprosthetic fracture risk. Methods:3-dimensional (3D) models of a Dorr Type A femur and 5 commonly used primary THA cementless stem designs (short single wedge, standard-length single wedge, modular, double-wedge metaphyseal filling, and cylindrical fully coated) were developed using computed tomography (CT) imaging. Implant insertion, single-leg stance, and twisting with a planted foot were simulated. FEA was performed, and maximum femoral strain along the implant-bone interface recorded. Results:Femoral strain was highest with short single-wedge stem design (0.3850) and lowest with standard-length single-wedge design (0.0520). Location of maximum femoral strain varied by stem design, but not with implant insertion, single-leg stance, or twisting with a planted foot. Strain was as high during implant insertion as with single-leg stance or twisting with a planted foot. Conclusions:Our results suggest the risk of intraoperative and postoperative periprosthetic fracture with THA in a Dorr A femur is highest with short single-wedge stems and lowest with standard-length single-wedge stems. Consideration may be given to minimising the use of short single-wedge stems in THA. Implant-specific sites of highest strain should be carefully inspected for fracture.more » « less
An official website of the United States government
